MATH 20D Spring 2023 Lecture 12.

A closer look at homogeneous equations and the Wronskian

Outline

(9) A closer look at homogeneous equations
(2) The Wronskian

Contents

(1) A closer look at homogeneous equations

(2) The Wronskian

Last Time

- A second order linear differential equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

is homogeneous if $g(t) \equiv 0$. Otherwise we say (1) is inhomogeneous.

Last Time

- A second order linear differential equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

is homogeneous if $g(t) \equiv 0$. Otherwise we say (1) is inhomogeneous.

Theorem

Suppose $y_{p}(t)$ is a particular solution to (1) and let $y_{h}(t)$ denote a general solution to the homogeneous equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{2}
\end{equation*}
$$

Then $y(t)=y_{p}(t)+y_{h}(t)$ is a general solution to (1).

Last Time

- A second order linear differential equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

is homogeneous if $g(t) \equiv 0$. Otherwise we say (1) is inhomogeneous.

Theorem

Suppose $y_{p}(t)$ is a particular solution to (1) and let $y_{h}(t)$ denote a general solution to the homogeneous equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{2}
\end{equation*}
$$

Then $y(t)=y_{p}(t)+y_{h}(t)$ is a general solution to (1).

- In the case when $a(t)=a \neq 0, b(t)=b$, and $c(t)=c$ are constants, we've seen how to construct a general solution to (2).

Last Time

- A second order linear differential equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

is homogeneous if $g(t) \equiv 0$. Otherwise we say (1) is inhomogeneous.

Theorem

Suppose $y_{p}(t)$ is a particular solution to (1) and let $y_{h}(t)$ denote a general solution to the homogeneous equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{2}
\end{equation*}
$$

Then $y(t)=y_{p}(t)+y_{h}(t)$ is a general solution to (1).

- In the case when $a(t)=a \neq 0, b(t)=b$, and $c(t)=c$ are constants, we've seen how to construct a general solution to (2). It can be obtained by writing

$$
y_{h}(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

where $y_{1}(t)$ and $y_{2}(t)$ are linearly independent solutions to (2).

A Closer Look at Homogeneous Equations

- Suppose $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{3}
\end{equation*}
$$

where $b(t) / a(t)$ and $c(t) / a(t)$ are continuous on \mathbb{R}.

Lemma

If C_{1} and C_{2} are constants then $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ is a solution to (3).

A Closer Look at Homogeneous Equations

- Suppose $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{3}
\end{equation*}
$$

where $b(t) / a(t)$ and $c(t) / a(t)$ are continuous on \mathbb{R}.

Lemma

If C_{1} and C_{2} are constants then $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ is a solution to (3).
Proof. Let $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ so that

$$
y^{\prime}(t)=C_{1} y^{\prime}(t)+C_{2} y_{2}^{\prime}(t) \quad \text { and } \quad y^{\prime \prime}(t)=C_{1} y_{1}^{\prime \prime}(t)+C_{2} y_{2}^{\prime \prime}(t) .
$$

A Closer Look at Homogeneous Equations

- Suppose $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{3}
\end{equation*}
$$

where $b(t) / a(t)$ and $c(t) / a(t)$ are continuous on \mathbb{R}.

Lemma

If C_{1} and C_{2} are constants then $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ is a solution to (3).
Proof. Let $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ so that

$$
y^{\prime}(t)=C_{1} y^{\prime}(t)+C_{2} y_{2}^{\prime}(t) \quad \text { and } \quad y^{\prime \prime}(t)=C_{1} y_{1}^{\prime \prime}(t)+C_{2} y_{2}^{\prime \prime}(t) .
$$

Therefore

$$
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)
$$

A Closer Look at Homogeneous Equations

- Suppose $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{3}
\end{equation*}
$$

where $b(t) / a(t)$ and $c(t) / a(t)$ are continuous on \mathbb{R}.

Lemma

If C_{1} and C_{2} are constants then $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ is a solution to (3).
Proof. Let $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ so that

$$
y^{\prime}(t)=C_{1} y^{\prime}(t)+C_{2} y_{2}^{\prime}(t) \quad \text { and } \quad y^{\prime \prime}(t)=C_{1} y_{1}^{\prime \prime}(t)+C_{2} y_{2}^{\prime \prime}(t) .
$$

Therefore

$$
\begin{aligned}
& a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t) \\
& =C_{1}\left(a(t) y_{1}^{\prime \prime}(t)+b(t) y_{1}^{\prime}(t)+c(t) y_{1}(t)\right)+C_{2}\left(a(t) y_{2}^{\prime \prime}(t)+b(t) y_{2}^{\prime}(t)+c(t) y_{2}(t)\right)
\end{aligned}
$$

A Closer Look at Homogeneous Equations

- Suppose $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{3}
\end{equation*}
$$

where $b(t) / a(t)$ and $c(t) / a(t)$ are continuous on \mathbb{R}.

Lemma

If C_{1} and C_{2} are constants then $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ is a solution to (3).
Proof. Let $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ so that

$$
y^{\prime}(t)=C_{1} y^{\prime}(t)+C_{2} y_{2}^{\prime}(t) \quad \text { and } \quad y^{\prime \prime}(t)=C_{1} y_{1}^{\prime \prime}(t)+C_{2} y_{2}^{\prime \prime}(t) .
$$

Therefore

$$
\begin{aligned}
& a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t) \\
& =C_{1}\left(a(t) y_{1}^{\prime \prime}(t)+b(t) y_{1}^{\prime}(t)+c(t) y_{1}(t)\right)+C_{2}\left(a(t) y_{2}^{\prime \prime}(t)+b(t) y_{2}^{\prime}(t)+c(t) y_{2}(t)\right) \\
& =C_{1} \cdot 0+C_{2} \cdot 0=0
\end{aligned}
$$

A Closer Look at Homogeneous Equations

- Suppose $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{3}
\end{equation*}
$$

where $b(t) / a(t)$ and $c(t) / a(t)$ are continuous on \mathbb{R}.

Lemma

If C_{1} and C_{2} are constants then $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ is a solution to (3).
Proof. Let $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ so that

$$
y^{\prime}(t)=C_{1} y^{\prime}(t)+C_{2} y_{2}^{\prime}(t) \quad \text { and } \quad y^{\prime \prime}(t)=C_{1} y_{1}^{\prime \prime}(t)+C_{2} y_{2}^{\prime \prime}(t) .
$$

Therefore

$$
\begin{aligned}
& a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t) \\
& =C_{1}\left(a(t) y_{1}^{\prime \prime}(t)+b(t) y_{1}^{\prime}(t)+c(t) y_{1}(t)\right)+C_{2}\left(a(t) y_{2}^{\prime \prime}(t)+b(t) y_{2}^{\prime}(t)+c(t) y_{2}(t)\right) \\
& =C_{1} \cdot 0+C_{2} \cdot 0=0
\end{aligned}
$$

So $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ is a solution to (3).

A Closer Look at Homogeneous Equations II

Question

Suppose $y_{1}(t)$ and $y_{2}(t)$ are solutions to the homogeneous equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 . \tag{4}
\end{equation*}
$$

A Closer Look at Homogeneous Equations II

Question

Suppose $y_{1}(t)$ and $y_{2}(t)$ are solutions to the homogeneous equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 . \tag{4}
\end{equation*}
$$

Is every solution to (4) expressible in the form $C_{1} y_{1}(t)+C_{2} y_{2}(t)$?

A Closer Look at Homogeneous Equations II

Question

Suppose $y_{1}(t)$ and $y_{2}(t)$ are solutions to the homogeneous equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 . \tag{4}
\end{equation*}
$$

Is every solution to (4) expressible in the form $C_{1} y_{1}(t)+C_{2} y_{2}(t)$?

- The answer to the above is yes if $y_{1}(t)$ and $y_{2}(t)$ are linearly independent.

A Closer Look at Homogeneous Equations II

Question

Suppose $y_{1}(t)$ and $y_{2}(t)$ are solutions to the homogeneous equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 . \tag{4}
\end{equation*}
$$

Is every solution to (4) expressible in the form $C_{1} y_{1}(t)+C_{2} y_{2}(t)$?

- The answer to the above is yes if $y_{1}(t)$ and $y_{2}(t)$ are linearly independent.
- Suppose $y_{\text {sol }}$ is a solution to (4) satisfying $y_{\text {sol }}(0)=Y_{0}$ and $y_{\text {sol }}(0)=Y_{1}$.

A Closer Look at Homogeneous Equations II

Question

Suppose $y_{1}(t)$ and $y_{2}(t)$ are solutions to the homogeneous equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 . \tag{4}
\end{equation*}
$$

Is every solution to (4) expressible in the form $C_{1} y_{1}(t)+C_{2} y_{2}(t)$?

- The answer to the above is yes if $y_{1}(t)$ and $y_{2}(t)$ are linearly independent.
- Suppose $y_{\text {sol }}$ is a solution to (4) satisfying $y_{\text {sol }}(0)=Y_{0}$ and $y_{\text {sol }}(0)=Y_{1}$.
- We want to show that we can find constants C_{1} and C_{2} such that

$$
y_{\mathrm{sol}}(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t) .
$$

A Closer Look at Homogeneous Equations II

Question

Suppose $y_{1}(t)$ and $y_{2}(t)$ are solutions to the homogeneous equation

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 . \tag{4}
\end{equation*}
$$

Is every solution to (4) expressible in the form $C_{1} y_{1}(t)+C_{2} y_{2}(t)$?

- The answer to the above is yes if $y_{1}(t)$ and $y_{2}(t)$ are linearly independent.
- Suppose $y_{\text {sol }}$ is a solution to (4) satisfying $y_{\text {sol }}(0)=Y_{0}$ and $y_{\text {sol }}(0)=Y_{1}$.
- We want to show that we can find constants C_{1} and C_{2} such that

$$
y_{\mathrm{sol}}(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t) .
$$

- The expression $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ always defines a solution to (4), so since solutions to IVPs are unique, it suffices to find C_{1} and C_{2} satisfying

$$
\left\{\begin{array}{l}
C_{1} y_{1}(0)+C_{2} y_{2}(0)=Y_{0} \\
C_{1} y_{1}^{\prime}(0)+C_{2} y_{2}^{\prime}(0)=Y_{1} .
\end{array}\right.
$$

A Closer Look at Homogeneous Equations III

In summary, if $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{5}
\end{equation*}
$$

then the expression $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ defines a general solution to (5) provided

$$
\left\{\begin{array}{l}
C_{1} y_{1}(0)+C_{2} y_{2}(0)=Y_{0} \tag{6}\\
C_{1} y_{1}^{\prime}(0)+C_{2} y_{2}^{\prime}(0)=Y_{1} .
\end{array}\right.
$$

admits a solution for arbitrary values of Y_{0} and Y_{1}.

A Closer Look at Homogeneous Equations III

In summary, if $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{5}
\end{equation*}
$$

then the expression $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ defines a general solution to (5) provided

$$
\left\{\begin{array}{l}
C_{1} y_{1}(0)+C_{2} y_{2}(0)=Y_{0} \tag{6}\\
C_{1} y_{1}^{\prime}(0)+C_{2} y_{2}^{\prime}(0)=Y_{1} .
\end{array}\right.
$$

admits a solution for arbitrary values of Y_{0} and Y_{1}.

- The system (6) can be solved using elimination and substitution to give

$$
C_{1}=\frac{Y_{0} y_{2}^{\prime}(0)-Y_{1} y_{2}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} \quad \text { and } \quad C_{2}=\frac{Y_{1} y_{1}(0)-Y_{0} y_{1}^{\prime}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} .
$$

A Closer Look at Homogeneous Equations III

In summary, if $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{5}
\end{equation*}
$$

then the expression $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ defines a general solution to (5) provided

$$
\left\{\begin{array}{l}
C_{1} y_{1}(0)+C_{2} y_{2}(0)=Y_{0} \tag{6}\\
C_{1} y_{1}^{\prime}(0)+C_{2} y_{2}^{\prime}(0)=Y_{1} .
\end{array}\right.
$$

admits a solution for arbitrary values of Y_{0} and Y_{1}.

- The system (6) can be solved using elimination and substitution to give

$$
C_{1}=\frac{Y_{0} y_{2}^{\prime}(0)-Y_{1} y_{2}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} \quad \text { and } \quad C_{2}=\frac{Y_{1} y_{1}(0)-Y_{0} y_{1}^{\prime}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} .
$$

- Therefore $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ defines a general solution to (5) provided

$$
\begin{equation*}
y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0) \neq 0 . \tag{7}
\end{equation*}
$$

A Closer Look at Homogeneous Equations III

In summary, if $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{5}
\end{equation*}
$$

then the expression $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ defines a general solution to (5) provided

$$
\left\{\begin{array}{l}
C_{1} y_{1}(0)+C_{2} y_{2}(0)=Y_{0} \tag{6}\\
C_{1} y_{1}^{\prime}(0)+C_{2} y_{2}^{\prime}(0)=Y_{1} .
\end{array}\right.
$$

admits a solution for arbitrary values of Y_{0} and Y_{1}.

- The system (6) can be solved using elimination and substitution to give

$$
C_{1}=\frac{Y_{0} y_{2}^{\prime}(0)-Y_{1} y_{2}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} \quad \text { and } \quad C_{2}=\frac{Y_{1} y_{1}(0)-Y_{0} y_{1}^{\prime}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} .
$$

- Therefore $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ defines a general solution to (5) provided

$$
\begin{equation*}
y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0) \neq 0 . \tag{7}
\end{equation*}
$$

We will see that (7) is satisfied when y_{1} and y_{2} are linearly independent.

Contents

(1) A closer look at homogeneous equations

(2) The Wronskian

The Wronskian

Definition

- Let $u_{1}(t)$ and $u_{2}(t)$ are differentiable functions defined on an interval I.
- The Wronskian of $u_{1}(t)$ and $u_{2}(t)$ is the function

$$
W\left[u_{1}, u_{2}\right]: I \rightarrow \mathbb{R}, \quad W\left[u_{1}, u_{2}\right](t)=u_{1}(t) u_{2}^{\prime}(t)-u_{2}(t) u_{1}^{\prime}(t) .
$$

The Wronskian

Definition

- Let $u_{1}(t)$ and $u_{2}(t)$ are differentiable functions defined on an interval I.
- The Wronskian of $u_{1}(t)$ and $u_{2}(t)$ is the function

$$
W\left[u_{1}, u_{2}\right]: I \rightarrow \mathbb{R}, \quad W\left[u_{1}, u_{2}\right](t)=u_{1}(t) u_{2}^{\prime}(t)-u_{2}(t) u_{1}^{\prime}(t) .
$$

Example

- Show that if $u_{1}(t)$ and $u_{2}(t)$ are linearly dependent then $W\left[u_{1}, u_{2}\right](t) \equiv 0$.

The Wronskian

Definition

- Let $u_{1}(t)$ and $u_{2}(t)$ are differentiable functions defined on an interval I.
- The Wronskian of $u_{1}(t)$ and $u_{2}(t)$ is the function

$$
W\left[u_{1}, u_{2}\right]: I \rightarrow \mathbb{R}, \quad W\left[u_{1}, u_{2}\right](t)=u_{1}(t) u_{2}^{\prime}(t)-u_{2}(t) u_{1}^{\prime}(t) .
$$

Example

- Show that if $u_{1}(t)$ and $u_{2}(t)$ are linearly dependent then $W\left[u_{1}, u_{2}\right](t) \equiv 0$.
- Show that $u_{1}(t)=t^{2}$ and $u_{2}(t)=t^{3}$ are linearly indepedent on \mathbb{R}.

The Wronskian

Definition

- Let $u_{1}(t)$ and $u_{2}(t)$ are differentiable functions defined on an interval I.
- The Wronskian of $u_{1}(t)$ and $u_{2}(t)$ is the function

$$
W\left[u_{1}, u_{2}\right]: I \rightarrow \mathbb{R}, \quad W\left[u_{1}, u_{2}\right](t)=u_{1}(t) u_{2}^{\prime}(t)-u_{2}(t) u_{1}^{\prime}(t) .
$$

Example

- Show that if $u_{1}(t)$ and $u_{2}(t)$ are linearly dependent then $W\left[u_{1}, u_{2}\right](t) \equiv 0$.
- Show that $u_{1}(t)=t^{2}$ and $u_{2}(t)=t^{3}$ are linearly indepedent on \mathbb{R}.
- Calculate

$$
W\left[t^{2}, t|t|\right](t)
$$

are the functions $u_{1}(t)=t^{2}$ and $u_{2}(t)=t|t|$ linearly dependent on \mathbb{R}.

Properties of the Wronskian

Theorem

Suppose $u_{1}, u_{2}: I \rightarrow \mathbb{R}$ are differentiable functions defined on an interval I and assume u_{1} and u_{2} occur as solutions to an ODE of the form

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0 \tag{8}
\end{equation*}
$$

with $p(t)$ and $q(t)$ continuous. Then either

$$
W\left[u_{1}, u_{2}\right](t) \equiv 0 \quad \text { or } \quad W\left[u_{1}, u_{2}\right](t) \neq 0 \quad \text { for all } t \in \mathbb{R}
$$

Properties of the Wronskian

Theorem

Suppose $u_{1}, u_{2}: I \rightarrow \mathbb{R}$ are differentiable functions defined on an interval I and assume u_{1} and u_{2} occur as solutions to an ODE of the form

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0 \tag{8}
\end{equation*}
$$

with $p(t)$ and $q(t)$ continuous. Then either

$$
W\left[u_{1}, u_{2}\right](t) \equiv 0 \quad \text { or } \quad W\left[u_{1}, u_{2}\right](t) \neq 0 \quad \text { for all } t \in \mathbb{R}
$$

and $W\left[u_{1}, u_{2}\right] \equiv 0$ occurs if and only if u_{1} and u_{2} are linearly dependent.

Properties of the Wronskian

Theorem

Suppose $u_{1}, u_{2}: I \rightarrow \mathbb{R}$ are differentiable functions defined on an interval I and assume u_{1} and u_{2} occur as solutions to an ODE of the form

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0 \tag{8}
\end{equation*}
$$

with $p(t)$ and $q(t)$ continuous. Then either

$$
W\left[u_{1}, u_{2}\right](t) \equiv 0 \quad \text { or } \quad W\left[u_{1}, u_{2}\right](t) \neq 0 \quad \text { for all } t \in \mathbb{R}
$$

and $W\left[u_{1}, u_{2}\right] \equiv 0$ occurs if and only if u_{1} and u_{2} are linearly dependent.

Example

True or False: $u_{1}(t)=t^{2}$ and $u_{2}(t)=t^{3}$ are solutions to an equation of the form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

with $p(t)$ and $q(t)$ continuous on \mathbb{R}.

The Wronskian and Homogeneous Equations

Earlier in lecture we saw that if $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{9}
\end{equation*}
$$

with $p(t)=b(t) / a(t)$ and $q(t)=c(t) / a(t)$ continuous on \mathbb{R}, then the expression $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ defines a general solution to (9) provided

$$
\left\{\begin{array}{l}
C_{1} y_{1}(0)+C_{2} y_{2}(0)=Y_{0} \tag{10}\\
C_{1} y_{1}^{\prime}(0)+C_{2} y_{2}^{\prime}(0)=Y_{1} .
\end{array}\right.
$$

admits a solution for arbitrary values of Y_{0} and Y_{1}.

The Wronskian and Homogeneous Equations

Earlier in lecture we saw that if $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{9}
\end{equation*}
$$

with $p(t)=b(t) / a(t)$ and $q(t)=c(t) / a(t)$ continuous on \mathbb{R}, then the expression $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ defines a general solution to (9) provided

$$
\left\{\begin{array}{l}
C_{1} y_{1}(0)+C_{2} y_{2}(0)=Y_{0} \tag{10}\\
C_{1} y_{1}^{\prime}(0)+C_{2} y_{2}^{\prime}(0)=Y_{1} .
\end{array}\right.
$$

admits a solution for arbitrary values of Y_{0} and Y_{1}.

- The system (10) can be solved using elimination and substitution to give

$$
C_{1}=\frac{Y_{0} y_{2}^{\prime}(0)-Y_{1} y_{2}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} \quad \text { and } \quad C_{2}=\frac{Y_{1} y_{1}(0)-Y_{0} y_{1}^{\prime}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} .
$$

The Wronskian and Homogeneous Equations

Earlier in lecture we saw that if $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{9}
\end{equation*}
$$

with $p(t)=b(t) / a(t)$ and $q(t)=c(t) / a(t)$ continuous on \mathbb{R}, then the expression $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ defines a general solution to (9) provided

$$
\left\{\begin{array}{l}
C_{1} y_{1}(0)+C_{2} y_{2}(0)=Y_{0} \tag{10}\\
C_{1} y_{1}^{\prime}(0)+C_{2} y_{2}^{\prime}(0)=Y_{1}
\end{array}\right.
$$

admits a solution for arbitrary values of Y_{0} and Y_{1}.

- The system (10) can be solved using elimination and substitution to give

$$
C_{1}=\frac{Y_{0} y_{2}^{\prime}(0)-Y_{1} y_{2}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} \quad \text { and } \quad C_{2}=\frac{Y_{1} y_{1}(0)-Y_{0} y_{1}^{\prime}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} .
$$

- We recongnize the identity

$$
\begin{equation*}
W\left[y_{1}, y_{2}\right](0)=y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0) . \tag{11}
\end{equation*}
$$

The Wronskian and Homogeneous Equations

Earlier in lecture we saw that if $y_{1}(t)$ and $y_{2}(t)$ are two solutions to the ODE

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=0 \tag{9}
\end{equation*}
$$

with $p(t)=b(t) / a(t)$ and $q(t)=c(t) / a(t)$ continuous on \mathbb{R}, then the expression $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ defines a general solution to (9) provided

$$
\left\{\begin{array}{l}
C_{1} y_{1}(0)+C_{2} y_{2}(0)=Y_{0} \tag{10}\\
C_{1} y_{1}^{\prime}(0)+C_{2} y_{2}^{\prime}(0)=Y_{1} .
\end{array}\right.
$$

admits a solution for arbitrary values of Y_{0} and Y_{1}.

- The system (10) can be solved using elimination and substitution to give

$$
C_{1}=\frac{Y_{0} y_{2}^{\prime}(0)-Y_{1} y_{2}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} \quad \text { and } \quad C_{2}=\frac{Y_{1} y_{1}(0)-Y_{0} y_{1}^{\prime}(0)}{y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)} .
$$

- We recongnize the identity

$$
\begin{equation*}
W\left[y_{1}, y_{2}\right](0)=y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0) . \tag{11}
\end{equation*}
$$

Hence if y_{1} and y_{2} are linearly independent then we can apply the theory on the previous slide to conclude that $W\left[y_{1}, y_{2}\right](0) \neq 0$. So C_{1} and C_{2} will be well defined.

Some useful Wronskian Computations

Example

Let $\alpha \in \mathbb{R}$ and $\beta>0$ be constants. Calculate the Wronskian

$$
W\left[e^{\alpha t} \cos (\beta t), e^{\alpha t} \sin (\beta t)\right](t)
$$

