MATH 20D Spring 2023 Lecture 12.

A closer look at homogeneous equations and the Wronskian

Outline

A closer look at homogeneous equations

The Wronskian

Contents

A closer look at homogeneous equations

2 The Wronskian

A second order linear differential equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = g(t)$$
(1)

is **homogeneous** if $g(t) \equiv 0$. Otherwise we say (1) is **inhomogeneous**.

A second order linear differential equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = g(t)$$
(1)

is **homogeneous** if $g(t) \equiv 0$. Otherwise we say (1) is **inhomogeneous**.

Theorem

Suppose $y_p(t)$ is a particular solution to (1) and let $y_h(t)$ denote a general solution to the homogeneous equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0.$$
 (2)

Then $y(t) = y_p(t) + y_h(t)$ is a general solution to (1).

A second order linear differential equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = g(t)$$
(1)

is **homogeneous** if $g(t) \equiv 0$. Otherwise we say (1) is **inhomogeneous**.

Theorem

Suppose $y_p(t)$ is a particular solution to (1) and let $y_h(t)$ denote a general solution to the homogeneous equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0.$$
 (2)

Then $y(t) = y_p(t) + y_h(t)$ is a general solution to (1).

• In the case when $a(t) = a \neq 0$, b(t) = b, and c(t) = c are constants, we've seen how to construct a general solution to (2).

A second order linear differential equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = g(t)$$
(1)

is **homogeneous** if $g(t) \equiv 0$. Otherwise we say (1) is **inhomogeneous**.

Theorem

Suppose $y_p(t)$ is a particular solution to (1) and let $y_h(t)$ denote a general solution to the homogeneous equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0.$$
 (2)

Then $y(t) = y_p(t) + y_h(t)$ is a general solution to (1).

• In the case when $a(t) = a \neq 0$, b(t) = b, and c(t) = c are constants, we've seen how to construct a general solution to (2). It can be obtained by writing

$$y_h(t) = C_1 y_1(t) + C_2 y_2(t)$$

where $y_1(t)$ and $y_2(t)$ are **linearly independent** solutions to (2).

• Suppose $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(3)

where b(t)/a(t) and c(t)/a(t) are continuous on \mathbb{R} .

Lemma

If C_1 and C_2 are constants then $y(t) = C_1y_1(t) + C_2y_2(t)$ is a solution to (3).

• Suppose $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(3)

where b(t)/a(t) and c(t)/a(t) are continuous on \mathbb{R} .

Lemma

If C_1 and C_2 are constants then $y(t) = C_1y_1(t) + C_2y_2(t)$ is a solution to (3).

PROOF. Let $y(t) = C_1y_1(t) + C_2y_2(t)$ so that

$$y'(t) = C_1 y'(t) + C_2 y'_2(t)$$
 and $y''(t) = C_1 y''_1(t) + C_2 y''_2(t)$.

• Suppose $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(3)

where b(t)/a(t) and c(t)/a(t) are continuous on \mathbb{R} .

Lemma

If C_1 and C_2 are constants then $y(t) = C_1y_1(t) + C_2y_2(t)$ is a solution to (3).

PROOF. Let $y(t) = C_1y_1(t) + C_2y_2(t)$ so that

$$y'(t) = C_1 y'(t) + C_2 y'_2(t)$$
 and $y''(t) = C_1 y''_1(t) + C_2 y''_2(t)$.

Therefore

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t)$$

• Suppose $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(3)

where b(t)/a(t) and c(t)/a(t) are continuous on \mathbb{R} .

Lemma

If C_1 and C_2 are constants then $y(t) = C_1y_1(t) + C_2y_2(t)$ is a solution to (3).

PROOF. Let $y(t) = C_1y_1(t) + C_2y_2(t)$ so that

$$y'(t) = C_1 y'(t) + C_2 y'_2(t)$$
 and $y''(t) = C_1 y''_1(t) + C_2 y''_2(t)$.

Therefore

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t)$$

= $C_1(a(t)y_1''(t) + b(t)y_1'(t) + c(t)y_1(t)) + C_2(a(t)y_2''(t) + b(t)y_2'(t) + c(t)y_2(t))$

• Suppose $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(3)

where b(t)/a(t) and c(t)/a(t) are continuous on \mathbb{R} .

Lemma

If C_1 and C_2 are constants then $y(t) = C_1y_1(t) + C_2y_2(t)$ is a solution to (3).

PROOF. Let $y(t) = C_1y_1(t) + C_2y_2(t)$ so that

$$y'(t) = C_1 y'(t) + C_2 y'_2(t)$$
 and $y''(t) = C_1 y''_1(t) + C_2 y''_2(t)$.

Therefore

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t)$$

$$= C_1(a(t)y_1''(t) + b(t)y_1'(t) + c(t)y_1(t)) + C_2(a(t)y_2''(t) + b(t)y_2'(t) + c(t)y_2(t))$$

$$= C_1 \cdot 0 + C_2 \cdot 0 = 0$$

• Suppose $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(3)

where b(t)/a(t) and c(t)/a(t) are continuous on \mathbb{R} .

Lemma

If C_1 and C_2 are constants then $y(t) = C_1y_1(t) + C_2y_2(t)$ is a solution to (3).

PROOF. Let
$$y(t) = C_1y_1(t) + C_2y_2(t)$$
 so that

$$y'(t) = C_1 y'(t) + C_2 y'_2(t)$$
 and $y''(t) = C_1 y''_1(t) + C_2 y''_2(t)$.

Therefore

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t)$$

$$= C_1(a(t)y_1''(t) + b(t)y_1'(t) + c(t)y_1(t)) + C_2(a(t)y_2''(t) + b(t)y_2'(t) + c(t)y_2(t))$$

$$= C_1 \cdot 0 + C_2 \cdot 0 = 0$$

So $y(t) = C_1 y_1(t) + C_2 y_2(t)$ is a solution to (3).

Question

Suppose $y_1(t)$ and $y_2(t)$ are solutions to the homogeneous equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0.$$
 (4)

Question

Suppose $y_1(t)$ and $y_2(t)$ are solutions to the homogeneous equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0.$$
 (4)

Is every solution to (4) expressible in the form $C_1y_1(t) + C_2y_2(t)$?

Question

Suppose $y_1(t)$ and $y_2(t)$ are solutions to the homogeneous equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0.$$
 (4)

Is every solution to (4) expressible in the form $C_1y_1(t) + C_2y_2(t)$?

• The answer to the above is **yes** if $y_1(t)$ and $y_2(t)$ are **linearly independent.**

Question

Suppose $y_1(t)$ and $y_2(t)$ are solutions to the homogeneous equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0.$$
 (4)

Is every solution to (4) expressible in the form $C_1y_1(t) + C_2y_2(t)$?

- The answer to the above is **yes** if $y_1(t)$ and $y_2(t)$ are **linearly independent.**
- Suppose y_{sol} is a solution to (4) satisfying $y_{sol}(0) = Y_0$ and $y_{sol}(0) = Y_1$.

Question

Suppose $y_1(t)$ and $y_2(t)$ are solutions to the homogeneous equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0.$$
 (4)

Is every solution to (4) expressible in the form $C_1y_1(t) + C_2y_2(t)$?

- The answer to the above is **yes** if $y_1(t)$ and $y_2(t)$ are **linearly independent**.
- Suppose y_{sol} is a solution to (4) satisfying $y_{sol}(0) = Y_0$ and $y_{sol}(0) = Y_1$.
- We want to show that we can find constants C_1 and C_2 such that

$$y_{\text{sol}}(t) = C_1 y_1(t) + C_2 y_2(t).$$

Question

Suppose $y_1(t)$ and $y_2(t)$ are solutions to the homogeneous equation

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0.$$
 (4)

Is every solution to (4) expressible in the form $C_1y_1(t) + C_2y_2(t)$?

- The answer to the above is **yes** if $y_1(t)$ and $y_2(t)$ are **linearly independent**.
- Suppose y_{sol} is a solution to (4) satisfying $y_{sol}(0) = Y_0$ and $y_{sol}(0) = Y_1$.
- We want to show that we can find constants C_1 and C_2 such that

$$y_{\text{sol}}(t) = C_1 y_1(t) + C_2 y_2(t).$$

• The expression $C_1y_1(t) + C_2y_2(t)$ always defines a solution to (4), so since solutions to IVPs are unique, it suffices to find C_1 and C_2 satisfying

$$\begin{cases} C_1 y_1(0) + C_2 y_2(0) = Y_0 \\ C_1 y_1'(0) + C_2 y_2'(0) = Y_1. \end{cases}$$

In summary, if $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(5)

then the expression $C_1y_1(t) + C_2y_2(t)$ defines a general solution to (5) provided

$$\begin{cases}
C_1 y_1(0) + C_2 y_2(0) = Y_0 \\
C_1 y_1'(0) + C_2 y_2'(0) = Y_1.
\end{cases}$$
(6)

admits a solution for arbitrary values of Y_0 and Y_1 .

In summary, if $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(5)

then the expression $C_1y_1(t) + C_2y_2(t)$ defines a general solution to (5) provided

$$\begin{cases} C_1 y_1(0) + C_2 y_2(0) = Y_0 \\ C_1 y_1'(0) + C_2 y_2'(0) = Y_1. \end{cases}$$
 (6)

admits a solution for arbitrary values of Y_0 and Y_1 .

• The system (6) can be solved using elimination and substitution to give

$$C_1 = \frac{Y_0 y_2'(0) - Y_1 y_2(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)} \quad \text{and} \quad C_2 = \frac{Y_1 y_1(0) - Y_0 y_1'(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)}.$$

In summary, if $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(5)

then the expression $C_1y_1(t) + C_2y_2(t)$ defines a general solution to (5) provided

$$\begin{cases} C_1 y_1(0) + C_2 y_2(0) = Y_0 \\ C_1 y_1'(0) + C_2 y_2'(0) = Y_1. \end{cases}$$
 (6)

admits a solution for arbitrary values of Y_0 and Y_1 .

The system (6) can be solved using elimination and substitution to give

$$C_1 = \frac{Y_0 y_2'(0) - Y_1 y_2(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)} \quad \text{and} \quad C_2 = \frac{Y_1 y_1(0) - Y_0 y_1'(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)}.$$

• Therefore $C_1y_1(t) + C_2y_2(t)$ defines a general solution to (5) provided

$$y_1(0)y_2'(0) - y_1'(0)y_2(0) \neq 0.$$
 (7)

In summary, if $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(5)

then the expression $C_1y_1(t) + C_2y_2(t)$ defines a general solution to (5) provided

$$\begin{cases}
C_1 y_1(0) + C_2 y_2(0) = Y_0 \\
C_1 y_1'(0) + C_2 y_2'(0) = Y_1.
\end{cases}$$
(6)

admits a solution for arbitrary values of Y_0 and Y_1 .

• The system (6) can be solved using elimination and substitution to give

$$C_1 = \frac{Y_0 y_2'(0) - Y_1 y_2(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)} \quad \text{and} \quad C_2 = \frac{Y_1 y_1(0) - Y_0 y_1'(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)}.$$

• Therefore $C_1y_1(t) + C_2y_2(t)$ defines a general solution to (5) provided

$$y_1(0)y_2'(0) - y_1'(0)y_2(0) \neq 0.$$
 (7)

We will see that (7) is satisfied when y_1 and y_2 are linearly independent.

Contents

A closer look at homogeneous equations

The Wronskian

Definition

- Let $u_1(t)$ and $u_2(t)$ are differentiable functions defined on an interval I.
- The **Wronskian** of $u_1(t)$ and $u_2(t)$ is the function

$$W[u_1, u_2]: I \to \mathbb{R}, \qquad W[u_1, u_2](t) = u_1(t)u_2'(t) - u_2(t)u_1'(t).$$

Definition

- Let $u_1(t)$ and $u_2(t)$ are differentiable functions defined on an interval I.
- The **Wronskian** of $u_1(t)$ and $u_2(t)$ is the function

$$W[u_1, u_2]: I \to \mathbb{R}, \qquad W[u_1, u_2](t) = u_1(t)u_2'(t) - u_2(t)u_1'(t).$$

Example

• Show that if $u_1(t)$ and $u_2(t)$ are linearly dependent then $W[u_1, u_2](t) \equiv 0$.

Definition

- Let $u_1(t)$ and $u_2(t)$ are differentiable functions defined on an interval I.
- The **Wronskian** of $u_1(t)$ and $u_2(t)$ is the function

$$W[u_1, u_2]: I \to \mathbb{R}, \qquad W[u_1, u_2](t) = u_1(t)u_2'(t) - u_2(t)u_1'(t).$$

Example

- Show that if $u_1(t)$ and $u_2(t)$ are linearly dependent then $W[u_1, u_2](t) \equiv 0$.
- Show that $u_1(t) = t^2$ and $u_2(t) = t^3$ are linearly independent on \mathbb{R} .

Definition

- Let $u_1(t)$ and $u_2(t)$ are differentiable functions defined on an interval I.
- The **Wronskian** of $u_1(t)$ and $u_2(t)$ is the function

$$W[u_1, u_2]: I \to \mathbb{R}, \qquad W[u_1, u_2](t) = u_1(t)u_2'(t) - u_2(t)u_1'(t).$$

Example

- Show that if $u_1(t)$ and $u_2(t)$ are linearly dependent then $W[u_1, u_2](t) \equiv 0$.
- Show that $u_1(t) = t^2$ and $u_2(t) = t^3$ are linearly independent on \mathbb{R} .
- Calculate

$$W[t^2, t|t|](t)$$

are the functions $u_1(t) = t^2$ and $u_2(t) = t|t|$ linearly dependent on \mathbb{R} .

Properties of the Wronskian

Theorem

Suppose $u_1, u_2: I \to \mathbb{R}$ are differentiable functions defined on an interval I and assume u_1 and u_2 occur as solutions to an ODE of the form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$
(8)

with p(t) and q(t) continuous. Then either

$$W[u_1, u_2](t) \equiv 0$$
 or $W[u_1, u_2](t) \neq 0$ for all $t \in \mathbb{R}$

Properties of the Wronskian

Theorem

Suppose $u_1, u_2: I \to \mathbb{R}$ are differentiable functions defined on an interval I and assume u_1 and u_2 occur as solutions to an ODE of the form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$
(8)

with p(t) and q(t) continuous. Then either

$$W[u_1, u_2](t) \equiv 0$$
 or $W[u_1, u_2](t) \neq 0$ for all $t \in \mathbb{R}$

and $W[u_1, u_2] \equiv 0$ occurs if and only if u_1 and u_2 are linearly dependent.

Properties of the Wronskian

Theorem

Suppose $u_1, u_2: I \to \mathbb{R}$ are differentiable functions defined on an interval I and assume u_1 and u_2 occur as solutions to an ODE of the form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$
(8)

with p(t) and q(t) continuous. Then either

$$W[u_1, u_2](t) \equiv 0$$
 or $W[u_1, u_2](t) \neq 0$ for all $t \in \mathbb{R}$

and $W[u_1, u_2] \equiv 0$ occurs if and only if u_1 and u_2 are linearly dependent.

Example

True or False: $u_1(t) = t^2$ and $u_2(t) = t^3$ are solutions to an equation of the form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

with p(t) and q(t) continuous on \mathbb{R} .

Earlier in lecture we saw that if $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(9)

with p(t)=b(t)/a(t) and q(t)=c(t)/a(t) continuous on \mathbb{R} , then the expression $C_1y_1(t)+C_2y_2(t)$ defines a general solution to (9) provided

$$\begin{cases}
C_1 y_1(0) + C_2 y_2(0) = Y_0 \\
C_1 y_1'(0) + C_2 y_2'(0) = Y_1.
\end{cases}$$
(10)

admits a solution for arbitrary values of Y_0 and Y_1 .

Earlier in lecture we saw that if $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(9)

with p(t)=b(t)/a(t) and q(t)=c(t)/a(t) continuous on \mathbb{R} , then the expression $C_1y_1(t)+C_2y_2(t)$ defines a general solution to (9) provided

$$\begin{cases}
C_1 y_1(0) + C_2 y_2(0) = Y_0 \\
C_1 y_1'(0) + C_2 y_2'(0) = Y_1.
\end{cases}$$
(10)

admits a solution for arbitrary values of Y_0 and Y_1 .

The system (10) can be solved using elimination and substitution to give

$$C_1 = \frac{Y_0 y_2'(0) - Y_1 y_2(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)} \quad \text{and} \quad C_2 = \frac{Y_1 y_1(0) - Y_0 y_1'(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)}.$$

Earlier in lecture we saw that if $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(9)

with p(t) = b(t)/a(t) and q(t) = c(t)/a(t) continuous on \mathbb{R} , then the expression $C_1y_1(t) + C_2y_2(t)$ defines a general solution to (9) provided

$$\begin{cases} C_1 y_1(0) + C_2 y_2(0) = Y_0 \\ C_1 y_1'(0) + C_2 y_2'(0) = Y_1. \end{cases}$$
 (10)

admits a solution for arbitrary values of Y_0 and Y_1 .

The system (10) can be solved using elimination and substitution to give

$$C_1 = \frac{Y_0 y_2'(0) - Y_1 y_2(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)} \quad \text{and} \quad C_2 = \frac{Y_1 y_1(0) - Y_0 y_1'(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)}.$$

We recongnize the identity

$$W[y_1, y_2](0) = y_1(0)y_2'(0) - y_1'(0)y_2(0).$$
(11)

Earlier in lecture we saw that if $y_1(t)$ and $y_2(t)$ are two solutions to the ODE

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$
(9)

with p(t) = b(t)/a(t) and q(t) = c(t)/a(t) continuous on \mathbb{R} , then the expression $C_1y_1(t) + C_2y_2(t)$ defines a general solution to (9) provided

$$\begin{cases}
C_1 y_1(0) + C_2 y_2(0) = Y_0 \\
C_1 y_1'(0) + C_2 y_2'(0) = Y_1.
\end{cases}$$
(10)

admits a solution for arbitrary values of Y_0 and Y_1 .

The system (10) can be solved using elimination and substitution to give

$$C_1 = \frac{Y_0 y_2'(0) - Y_1 y_2(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)} \quad \text{and} \quad C_2 = \frac{Y_1 y_1(0) - Y_0 y_1'(0)}{y_1(0) y_2'(0) - y_1'(0) y_2(0)}.$$

We recongnize the identity

$$W[y_1, y_2](0) = y_1(0)y_2'(0) - y_1'(0)y_2(0).$$
(11)

Hence if y_1 and y_2 are linearly independent then we can apply the theory on the previous slide to conclude that $W[y_1,y_2](0) \neq 0$. So C_1 and C_2 will be well defined.

Some useful Wronskian Computations

Example

Let $\alpha \in \mathbb{R}$ and $\beta > 0$ be constants. Calculate the Wronskian

$$W[e^{\alpha t}\cos(\beta t), e^{\alpha t}\sin(\beta t)](t).$$